Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Microb Pathog ; 181: 106161, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37207784

RESUMO

Bacillus velezensis FS26 is a bacterium from the genus Bacillus that has been proven as a potential probiotic in aquaculture with a good antagonistic effect on Aeromonas spp. and Vibrio spp. Whole-genome sequencing (WGS) allows a comprehensive and in-depth analysis at the molecular level, and it is becoming an increasingly significant technique in aquaculture research. Although numerous probiotic genomes have been sequenced and investigated recently, there are minimal data on in silico analysis of B. velezensis as a probiotic bacterium isolated from aquaculture sources. Thus, this study aims to analyse the general genome characteristics and probiotic markers from the B. velezensis FS26 genome with secondary metabolites predicted against aquaculture pathogens. The B. velezensis FS26 genome (GenBank Accession: JAOPEO000000000) assembly proved to be of high quality, with eight contigs containing 3,926,371 bp and an average G + C content of 46.5%. According to antiSMASH analysis, five clusters of secondary metabolites from the B. velezensis FS26 genome showed 100% similarity. These clusters include Cluster 2 (bacilysin), Cluster 6 (bacillibactin), Cluster 7 (fengycin), Cluster 8 (bacillaene), and Cluster 9 (macrolactin H), which signify promising antibacterial, antifungal, and anticyanobacterial agents against pathogens in aquaculture. The probiotic markers of B. velezensis FS26 genome for adhesion capability in the hosts' intestine, as well as the acid and bile salt-tolerant genes, were also detected through the Prokaryotic Genome Annotation System (Prokka) annotation pipeline. These results are in agreement with our previous in vitro data, suggesting that the in silico investigation facilitates establishing B. velezensis FS26 as a beneficial probiotic for use in aquaculture.


Assuntos
Anti-Infecciosos , Bacillus , Probióticos , Vibrio , Anti-Infecciosos/metabolismo , Vibrio/genética , Genoma Bacteriano
2.
Polymers (Basel) ; 15(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36904501

RESUMO

Lignin is a natural biopolymer with a complex three-dimensional network and it is rich in phenol, making it a good candidate for the production of bio-based polyphenol material. This study attempts to characterize the properties of green phenol-formaldehyde (PF) resins produced through phenol substitution by the phenolated lignin (PL) and bio-oil (BO), extracted from oil palm empty fruit bunch black liquor. Mixtures of PF with varied substitution rates of PL and BO were prepared by heating a mixture of phenol-phenol substitute with 30 wt.% NaOH and 80% formaldehyde solution at 94 °C for 15 min. After that, the temperature was reduced to 80 °C before the remaining 20% formaldehyde solution was added. The reaction was carried out by heating the mixture to 94 °C once more, holding it for 25 min, and then rapidly lowering the temperature to 60 °C, to produce the PL-PF or BO-PF resins. The modified resins were then tested for pH, viscosity, solid content, FTIR, and TGA. Results revealed that the substitution of 5% PL into PF resins is enough to improve its physical properties. The PL-PF resin production process was also deemed environmentally beneficial, as it met 7 of the 8 Green Chemistry Principle evaluation criteria.

3.
World J Microbiol Biotechnol ; 39(5): 123, 2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36934342

RESUMO

In today's fast-shifting climate change scenario, crops are exposed to environmental pressures, abiotic and biotic stress. Hence, these will affect the production of agricultural products and give rise to a worldwide economic crisis. The increase in world population has exacerbated the situation with increasing food demand. The use of chemical agents is no longer recommended due to adverse effects towards the environment and health. Biocontrol agents (BCAs) and biostimulants, are feasible options for dealing with yield losses induced by plant stresses, which are becoming more intense due to climate change. BCAs and biostimulants have been recommended due to their dual action in reducing both stresses simultaneously. Although protection against biotic stresses falls outside the generally accepted definition of biostimulant, some microbial and non-microbial biostimulants possess the biocontrol function, which helps reduce biotic pressure on crops. The application of synergisms using BCAs and biostimulants to control crop stresses is rarely explored. Currently, a combined application using both agents offer a great alternative to increase the yield and growth of crops while managing stresses. This article provides an overview of crop stresses and plant stress responses, a general knowledge on synergism, mathematical modelling used for synergy evaluation and type of in vitro and in vivo synergy testing, as well as the application of synergism using BCAs and biostimulants in reducing crop stresses. This review will facilitate an understanding of the combined effect of both agents on improving crop yield and growth and reducing stress while also providing an eco-friendly alternative to agroecosystems.


Assuntos
Agricultura , Estresse Fisiológico , Produtos Agrícolas , Mudança Climática
4.
Mycologia ; 115(2): 178-186, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36893072

RESUMO

Banana (Musa spp.), an important food crop in many parts of the world, is threatened by a deadly wilt disease caused by Fusarium oxysporum f. sp. cubense Tropical Race 4 (TR4). Increasing evidence indicates that plant actively recruits beneficial microbes in the rhizosphere to suppress soil-borne pathogens. Hence, studies on the composition and diversity of the root-associated microbial communities are important for banana health. Research on beneficial microbial communities has focused on bacteria, although fungi can also influence soil-borne disease. Here, high-throughput sequencing targeting the fungal internal transcribed spacer (ITS) was employed to systematically characterize the difference in the soil fungal community associated with Fusarium wilt (FW) of banana. The community structure of fungi in the healthy and TR4-infected rhizospheres was significantly different compared with that of bulk soil within the same farm. The rhizosphere soils of infected plants exhibited higher richness and diversity compared with healthy plants, with significant abundance of Fusarium genus at 14%. In the healthy rhizosphere soil, Penicillium spp. were more abundant at 7% and positively correlated with magnesium. This study produced a detailed description of fungal community structure in healthy and TR4-infected banana soils in Malaysia and identified candidate biomarker taxa that may be associated with FW disease promotion and suppression. The findings also expand the global inventory of fungal communities associated with the components of asymptomatic and symptomatic banana plants infected by TR4.


Assuntos
Fusarium , Musa , Micobioma , Fusarium/genética , Musa/microbiologia , Solo/química , Incidência , Malásia , Doenças das Plantas/microbiologia
5.
Int. microbiol ; 26(1): 91-98, Ene. 2023. ilus
Artigo em Inglês | IBECS | ID: ibc-215920

RESUMO

Paddy is an important crop in Malaysia. There are various pathogens able to infect paddy causing a loss in yield’s production. In this study, dual culture method, volatile organic compound (VOC) analysis, and non-volatile compound analysis were used to assess the ability of mushroom to control fungal rice pathogens including Curvularia lunata, Bipolaris panici-miliacei, and Nigrospora sp. Four mushroom isolates were further analysed for their antagonistic activity against rice pathogen. The highest percentage inhibition of radial growth (PIRG) was recorded between 45.55 and 73.68% observed in isolate 42b. The 4 isolates with the highest PIRG based on the dual culture analysis were then tested for their production of VOCs and non-volatile compound. Internal transcribed spacer (ITS) region analysis of the 4 mushroom isolates revealed their identity as Coprinellus disseminates (isolate 12b), Marasmiellus palmivorus (isolate 42b), Trametes maxima (isolate 56e), and Lentinus sajor-caju (isolate 60a). This study showed that mushroom isolates have the potential of antagonistic effect on various fungal rice pathogens tested by the production of secondary metabolites and mycoparasitic interaction.(AU)


Assuntos
Humanos , Oryza , Agaricales , Compostos Orgânicos Voláteis , Micotoxicose , Genes Fúngicos , Microbiologia , Malásia
6.
Int Microbiol ; 26(1): 91-98, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36089618

RESUMO

Paddy is an important crop in Malaysia. There are various pathogens able to infect paddy causing a loss in yield's production. In this study, dual culture method, volatile organic compound (VOC) analysis, and non-volatile compound analysis were used to assess the ability of mushroom to control fungal rice pathogens including Curvularia lunata, Bipolaris panici-miliacei, and Nigrospora sp. Four mushroom isolates were further analysed for their antagonistic activity against rice pathogen. The highest percentage inhibition of radial growth (PIRG) was recorded between 45.55 and 73.68% observed in isolate 42b. The 4 isolates with the highest PIRG based on the dual culture analysis were then tested for their production of VOCs and non-volatile compound. Internal transcribed spacer (ITS) region analysis of the 4 mushroom isolates revealed their identity as Coprinellus disseminates (isolate 12b), Marasmiellus palmivorus (isolate 42b), Trametes maxima (isolate 56e), and Lentinus sajor-caju (isolate 60a). This study showed that mushroom isolates have the potential of antagonistic effect on various fungal rice pathogens tested by the production of secondary metabolites and mycoparasitic interaction.


Assuntos
Agaricales , Oryza , Trametes , Malásia
7.
J Biotechnol ; 359: 148-160, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36181924

RESUMO

Streptomyces corchorusii TKR8, Streptomyces corchorusii JAS2 and Streptomyces misionensis TBS5 were previously obtained from rice fields and have been studied as a biocontrol agent against the causal agent of Bacterial Panicle Blight (BPB) disease on rice, Burkholderia glumae, and rice plant growth promoter. This study evaluated the potential of plant growth-promoting Streptomyces (PGPS) to control B. glumae and promote rice plants' growth under greenhouse conditions. PGPS were further characterized based on their phenotypic and biochemical differences. Multilocus sequence analysis (MLSA) by amplifying gyrB, rpoB and trpB using PCR was conducted to identify the PGPS further. The antimicrobial activity of PGPS against B. glumae was investigated using a survival assay and microscopic analysis. Result indicates that JAS2 (61.2 %) utilized the highest number of carbohydrates tested, followed by TKR8 (53.1 %) and TBS5 (40.8 %) as analyzed using API 50 CH. Based on MLSA analysis of the concatenated partial sequences (1520 bp) from three housekeeping genes, the neighbor-joining tree identified JAS2 and TKR8 as S. corchorusii. Meanwhile, TBS5 as S. misionensis. Antimicrobial activity of PGPS against B. glumae has found that the supernatant of Streptomyces reduced the survival viability of B. glumae up to 50.7-70.3 %. SEM images showed that substantial morphological changes happened in cell membranes of B. glumae after the Streptomyces treatment. The highest vigor index of inoculated seedlings was determined when rice seeds were treated with a spore suspension of 1 × 107 spore/mL (for JAS2 and TKR8) and 1 × 106 spore/mL (for TBS5). Under greenhouse conditions, Streptomyces-treated plants showed improvement in rice plants' growth and grain yield and reduced the BPB disease severity. Results suggest that the S. corchorusii TKR8, S. corchorusii JAS2 and S. misionensis TBS5 should be promoted as biocontrol agents against B. glumae and bioformulations for rice crops.


Assuntos
Anti-Infecciosos , Burkholderia , Oryza , Streptomyces , Oryza/metabolismo , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Burkholderia/genética , Streptomyces/genética , Carboidratos , Anti-Infecciosos/metabolismo
8.
Data Brief ; 44: 108533, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36042821

RESUMO

Vibriosis accounts for 66.7% of diseases reported in groupers' cultures and affects almost all stages of growth. The disease could lead up to mortality up to 50% mortality, and it was reported that high stocking density and poor fish handling were among the factors that contributed to the disease dissemination. V. harveyi has been reported to be among the causative agent and has caused acute mortality in cage groupers. In this study, we report the genome of V. harveyi VH1 isolated from a diseased tiger grouper Epinephelus fuscoguttatus, reared in a cage farm located in the coastal area of Langkawi.

9.
Plant Dis ; 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35748735

RESUMO

Rice (Oryza sativa) is a staple food for most of the world's populations, particularly in Asia (Gumma et al. 2011). The rice sector provides Malaysians with a food supply, food sufficiency, and income for growers (Man et al. 2009). From January to February 2022, panicle samples showing symptoms of bacterial panicle blight (BPB) disease, including reddish-brown, linear lesions with indistinct margins on flag-leaf sheaths and blighted, upright, grayish straw-colored florets with sterile and aborted grains on panicles were collected in granary areas in Sekinchan, Selangor, Malaysia with 90% disease incidence in fields. Surface-sterilization of infected leaf tissue was performed using 75% ethanol and 1% sodium hypochlorite, followed by rinsing three times in sterilized water. Leaf tissue was macerated in sterilized water and aliquots were spread on King's B agar medium, then cultured for 24 h to 48 h at 35 °C. All isolated bacteria were Gram-negative rods, positive for catalase and gelatinase but negative for indole, oxidase and hydrogen sulfide (H2S), and utilized sucrose, inositol, mannitol, glucose, and citrate. Colonies were circular and smooth-margined, producing a diffusible yellowish-green pigment on King's B agar medium, which are characteristics of Burkholderia species (Keith et al. 2005). Five representative isolates (UPMBG7, UPMBG8, UPMBG9, UPMBG15, UPMBG17) were selected for molecular and pathogenicity tests. PCR using specific primers targeting the gyrB gene for molecular characterization was performed, and the ∼470 bp amplicons were sequenced (Maeda et al. 2006) and deposited in GenBank (OM824438 to OM824442). A BLASTn analysis revealed that the five isolates were 99% identical to the B. gladioli reference strains MAFF 302533, GRBB15041, and LMG19584 in GenBank (AB190628, KX638432, and AB220898). A phylogenetic tree using Maximum-likelihood analysis of the gyrB gene sequences showed that the five isolates were 99% identical to B. gladioli reference strains (AB190628, KX638432, and AB220898). To verify the identification of these isolates, the 16S rDNA gene was amplified using 16SF/16SR primers (Ramachandran et al. 2021), producing ~1,400 bp amplicons. The resulting sequences of the five isolates (OM869953 to OM869957) were 98% identical to the reference strains of B. gladioli (NR113629 and NR117553). To confirm pathogenicity, 10 ml suspensions of the five isolates at of 108 CFU/ml were inoculated into the panicles and crowns of 75-day-old rice seedlings of local rice varieties MR269 and MR219 grown in a glasshouse with temperatures ranging from 37 °C to 41 °C (Nandakumar et al. 2009). Control rice seedlings were inoculated with sterilized water. All isolates produced BPB disease symptoms like those originally found in the rice fields at four weeks after inoculation. Control seedlings remained asymptomatic. To fulfill Koch's postulates, the bacteria were reisolated from symptomatic panicles and were confirmed as B. gladioli by sequence analysis of the gyrB and 16S rDNA genes. To our knowledge, this is the first report of B. gladioli causing BPB disease of rice in Malaysia. Since BPB disease causes a significant threat to the rice industry, it is crucial to investigate the diversity of this destructive pathogen for effective disease management strategies in Malaysia.

10.
Data Brief ; 41: 107974, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35252492

RESUMO

A hypervirulent pathotype of A. hydrophila (vAh) is responsible for Motile Aeromonas Septicemia (MAS) and causes mass mortalities among farmed carp and catfish species in the USA and China. One unique phenotype for vAh among other A. hydrophila strains is the ability to utilize myo-inositol as a sole carbon source. While screening for Aeromonas isolates from diseased fish that can grow using myo-inositol as a sole carbon source, A. dhakensis 1P11S3 was isolated from the spleen of striped catfish (Pangasianodon hypopthalmus) displaying clinical MAS symptoms from a freshwater farm in Malaysia. Aeromonas dhakensis is also an important pathogen in aquaculture, and in this study, we report the draft genome sequence for A. dhakensis 1P11S3, that utilize myo-inositol as a sole carbon source.

11.
Microb Pathog ; 164: 105417, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35085717

RESUMO

Pathogens from the Vibrio and Aeromonas genera often cause detrimental effects to the aquaculture sector. Previously, antibiotics was used to resolve the infections, but this caused the spread of antibiotic resistant bacteria and antibiotic resistance genes into the environment. As an approach to address this issue, probiotic bacteria were introduced to improve the hosts' microbiome, disease protection, health condition, growth efficiency, feed consumption, stress response and general vigour. However, reports showed that some commercially available probiotics were restricted to a small number of microbial species and there are inconsistencies concerning its effectiveness. Hence, the aim of this study was to isolate and evaluate new Bacillus spp. from the gut of giant freshwater prawn as potential probiotics. Three Bacillus spp. isolates, Bacillus subtilis FS6 (MZ960135), Bacillus velezensis FS26 (MZ960133) and Bacillus pumilus FS97 (MZ960136) were characterised, and in vitro testing showed good probiotic properties which can help in dealing with diseases in aquaculture. Among the Bacillus spp., Bacillus velezensis FS26 showed higher antimicrobial activity towards Aeromonas hydrophila LMG 13658 and Aeromonas veronii clone DK-A. veronii-27 at 23.7 mm and 25 mm, respectively. Bacillus subtilis FS6 and Bacillus velezensis FS26 resulted in good adherence to both xylene and chloroform hydrocarbons. The Bacillus spp. isolated displayed high survivability towards 0.3% bile salt and exhibited amylase, protease, and lipase activities. Thus, the isolated Bacillus spp. are considered safe based on the sensitivity analysis towards antibiotics and γ-haemolytic activity.


Assuntos
Bacillus , Doenças dos Peixes , Probióticos , Vibrioses , Animais , Doenças dos Peixes/microbiologia , Água Doce
12.
Sci Rep ; 12(1): 999, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35046475

RESUMO

Fusarium wilt (FW) caused by Fusarium oxysporum f. sp. cubense Tropical Race 4 (TR4) is a soil-borne disease that infects bananas, causing severe economic losses worldwide. To reveal the relationship between bacterial populations and FW, the bacterial communities of healthy and TR4-infected rhizosphere and bulk soils were compared using 16S rRNA gene sequencing. Soil physicochemical properties associated with FW were also analyzed. We found the community structure of bacteria in the healthy and TR4 infected rhizosphere was significantly different compared to bulk soil within the same farm. The rhizosphere soils of infected plants exhibited higher richness and diversity than healthy plant with significant abundance of Proteobacteria. In the healthy rhizosphere soil, beneficial bacteria such as Burkholderia and Streptomyces spp. were more abundant. Compared to the infected rhizosphere soil, healthy rhizosphere soil was associated with RNA metabolism and transporters pathways and a high level of magnesium and cation exchange capacity. Overall, we reported changes in the key taxa of rhizospheric bacterial communities and soil physicochemical properties of healthy and FW-infected plants, suggesting their potential role as indicators for plant health.


Assuntos
Musa , Doenças das Plantas/microbiologia , Microbiologia do Solo , Solo/química , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Fusarium , Magnésio/análise , Malásia , RNA Ribossômico 16S/análise , Rizosfera
13.
Biology (Basel) ; 10(11)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34827185

RESUMO

The genus Aeromonas has been recognised as an important pathogenic species in aquaculture that causes motile Aeromonas septicaemia (MAS) or less severe, chronic infections. This study compares the pathogenicity of the different Aeromonas spp. that were previously isolated from freshwater fish with signs of MAS. A total of 124 isolates of Aeromonas spp. were initially screened for the ability to grow on M9 agar with myo-inositol as a sole carbon source, which is a discriminatory phenotype for the hypervirulent A. hydrophila (vAh) pathotype. Subsequently, LD50 of six selected Aeromonas spp. were determined by intraperitoneal injection of bacterial suspension containing 103, 105, and 107 CFU/mL of the respective Aeromonas sp. to red hybrid tilapias. The kidneys, livers and spleens of infected moribund fish were examined for histopathological changes. The screening revealed that only A. dhakensis 1P11S3 was able to grow using myo-inositol as a sole carbon source, and no vAh strains were identified. The LD50-240h of A. dhakensis 1P11S3 was 107 CFU/mL, while the non-myo-inositol utilizing A. dhakensis 4PS2 and A. hydrophila 8TK3 was lower at 105 CFU/mL. Similarly, tilapia challenged with the myo-inositol A. dhakensis 1P11S3 showed significantly (p < 0.05) less severe signs, gross and histopathological lesions, and a lower mortality rate than the non-myo-inositol A. dhakensis 4PS2 and A. hydrophila 8TK3. These findings suggested that myo-inositol utilizing A. dhakensis 1P11S3 was not a hypervirulent Aeromonas sp. under current experimental disease challenge conditions, and that diverse Aeromonas spp. are of concern in aquaculture farmed freshwater fish. Therefore, future study is warranted on genomic level to further elucidate the influence of myo-inositol utilizing ability on the pathogenesis of Aeromonas spp., since this ability correlates with hypervirulence in A. hydrophila strains.

14.
Plant Pathol J ; 37(2): 173-181, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33866759

RESUMO

The genus Streptomyces demonstrates enormous promise in promoting plant growth and protecting plants against various pathogens. Single and consortium treatments of two selected Streptomyces strains (Streptomyces shenzhenensis TKSC3 and Streptomyces sp. SS8) were evaluated for their growth-promoting potential on rice, and biocontrol efficiency through induced systemic resistance (ISR) mediation against Xanthomonas oryzae pv. oryzicola (Xoc), the causal agent of rice bacterial leaf streak (BLS) disease. Seed bacterization by Streptomyces strains improved seed germination and vigor, relative to the untreated seed. Under greenhouse conditions, seed bacterization with consortium treatment TKSC3 + SS8 increased seed germination, root length, and dry weight by 20%, 23%, and 33%, respectively. Single and consortium Streptomyces treatments also successfully suppressed Xoc infection. The result was consistent with defense-related enzyme quantification wherein single and consortium Streptomyces treatments increased peroxidase (POX), polyphenol oxidase, phenylalanine ammonia-lyase, and ß,1-3 glucanase (GLU) accumulation compared to untreated plant. Within all Streptomyces treatments, consortium treatment TKSC3 + SS8 showed the highest disease suppression efficiency (81.02%) and the lowest area under the disease progress curve value (95.79), making it the best to control BLS disease. Consortium treatment TKSC3 + SS8 induced the highest POX and GLU enzyme activities at 114.32 µmol/min/mg protein and 260.32 abs/min/mg protein, respectively, with both enzymes responsible for plant cell wall reinforcement and resistant interaction. Our results revealed that in addition to promoting plant growth, these Streptomyces strains also mediated ISR in rice plants, thereby, ensuring protection from BLS disease.

15.
Microorganisms ; 9(4)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810209

RESUMO

As a major food crop, rice (Oryza sativa) is produced and consumed by nearly 90% of the population in Asia with less than 9% produced outside Asia. Hence, reports on large scale grain losses were alarming and resulted in a heightened awareness on the importance of rice plants' health and increased interest against phytopathogens in rice. To serve this interest, this review will provide a summary on bacterial rice pathogens, which can potentially be controlled by plant growth-promoting bacteria (PGPB). Additionally, this review highlights PGPB-mediated functional traits, including biocontrol of bacterial rice pathogens and enhancement of rice plant's growth. Currently, a plethora of recent studies address the use of PGPB to combat bacterial rice pathogens in an attempt to replace existing methods of chemical fertilizers and pesticides that often lead to environmental pollutions. As a tool to combat bacterial rice pathogens, PGPB presented itself as a promising alternative in improving rice plants' health and simultaneously controlling bacterial rice pathogens in vitro and in the field/greenhouse studies. PGPB, such as Bacillus, Pseudomonas, Enterobacter, Streptomyces, are now very well-known. Applications of PGPB as bioformulations are found to be effective in improving rice productivity and provide an eco-friendly alternative to agroecosystems.

16.
Int J Mol Sci ; 22(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652577

RESUMO

Gene therapy research has advanced to clinical trials, but it is hampered by unstable nucleic acids packaged inside carriers and there is a lack of specificity towards targeted sites in the body. This study aims to address gene therapy limitations by encapsidating a plasmid synthesizing a short hairpin RNA (shRNA) that targets the anti-apoptotic Bcl-2 gene using truncated hepatitis B core antigen (tHBcAg) virus-like particle (VLP). A shRNA sequence targeting anti-apoptotic Bcl-2 was synthesized and cloned into the pSilencer 2.0-U6 vector. The recombinant plasmid, namely PshRNA, was encapsidated inside tHBcAg VLP and conjugated with folic acid (FA) to produce FA-tHBcAg-PshRNA VLP. Electron microscopy revealed that the FA-tHBcAg-PshRNA VLP has an icosahedral structure that is similar to the unmodified tHBcAg VLP. Delivery of FA-tHBcAg-PshRNA VLP into HeLa cells overexpressing the folate receptor significantly downregulated the expression of anti-apoptotic Bcl-2 at 48 and 72 h post-transfection. The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay demonstrated that the cells' viability was significantly reduced from 89.46% at 24 h to 64.52% and 60.63%, respectively, at 48 and 72 h post-transfection. As a conclusion, tHBcAg VLP can be used as a carrier for a receptor-mediated targeted delivery of a therapeutic plasmid encoding shRNA for gene silencing in cancer cells.


Assuntos
Inativação Gênica , Técnicas de Transferência de Genes , Vírus da Hepatite B , Plasmídeos , Proteínas Proto-Oncogênicas c-bcl-2 , RNA Interferente Pequeno , Neoplasias do Colo do Útero , Feminino , Células HeLa , Humanos , Plasmídeos/genética , Plasmídeos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Interferente Pequeno/biossíntese , RNA Interferente Pequeno/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
17.
Front Plant Sci ; 12: 769855, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095950

RESUMO

Fusarium oxysporum f. sp. cubense tropical race 4 (FocTR4) is a destructive necrotrophic fungal pathogen afflicting global banana production. Infection process involves the activation of programmed cell death (PCD). In this study, seven Musa acuminata vacuolar processing enzyme (MaVPE1-MaVPE7) genes associated with PCD were successfully identified. Phylogenetic analysis and tissue-specific expression categorized these MaVPEs into the seed and vegetative types. FocTR4 infection induced the majority of MaVPE expressions in the susceptible cultivar "Berangan" as compared to the resistant cultivar "Jari Buaya." Consistently, upon FocTR4 infection, high caspase-1 activity was detected in the susceptible cultivar, while low level of caspase-1 activity was recorded in the resistant cultivar. Furthermore, inhibition of MaVPE activities via caspase-1 inhibitor in the susceptible cultivar reduced tonoplast rupture, decreased lesion formation, and enhanced stress tolerance against FocTR4 infection. Additionally, the Arabidopsis VPE-null mutant exhibited higher tolerance to FocTR4 infection, indicated by reduced sporulation rate, low levels of H2O2 content, and high levels of cell viability. Comparative proteomic profiling analysis revealed increase in the abundance of cysteine proteinase in the inoculated susceptible cultivar, as opposed to cysteine proteinase inhibitors in the resistant cultivar. In conclusion, the increase in vacuolar processing enzyme (VPE)-mediated PCD played a crucial role in modulating susceptibility response during compatible interaction, which facilitated FocTR4 colonization in the host.

18.
Microorganisms ; 8(8)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731441

RESUMO

Basal stem rot (BSR) disease caused by Ganoderma boninense basidiomycetous fungus is the most economically important disease in oil palms in South East Asia. Unfortunately, there is no single most effective control measure available. Tremendous efforts have been directed in incorporation of environmentally friendly biocontrol approaches in minimizing BSR disease. This study investigated the performance of two potential biocontrol agents (BCAs), AAT0115 and AAB0114 strains recovered from oil palm on suppression of BSR in planta, and also assessed their plant-growth-promoting (PGP) performance. ITS rRNA-sequence phylogeny discriminated the two ascomycetous Talaromyces apiculatus (Ta) AT0115 and Clonostachys rosea (Cr) AAB0114 biocontrol species with PGP characteristics. In vitro studies have demonstrated both Ta and Cr are capable of reducing linear mycelial growth of G. boninense. Inoculation of individual Cr and Ta-as well as Cr+Ta consortium-induced a significant increment in leaf area and bole girth of oil-palm seedlings five months post-inoculation (MPI) under nursery conditions. At five months post-inoculation, shoot and root biomass, and nutrient contents (nitrogen, phosphorus, potassium, calcium, magnesium and boron) were significantly higher in Ta-inoculated seedlings compared to control treated with non-Ta-inoculated maize. Chlorophyll and carotenoids contents in rapidly growing oil-palm seedlings challenged with Cr, Ta or a combination of both were not negatively affected. Cr, Ta and Cr+Ta consortium treated seedlings had 4.9-60% BSR disease reduction compared to the untreated control. Co-inoculation of Cr and Ta resulted in increased BSR control efficiencies by 18-26% (compared with Cr only) and 48-55% (compared with Ta only). Collectively, Cr and Ta, either individually or in consortium showed potential as BSR biocontrol agents while also possess PGP traits in oil palm.

19.
PLoS One ; 15(6): e0234350, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32530926

RESUMO

Jackfruit-bronzing is caused by bacteria Pantoea stewartii subspecies stewartii (P. stewartii subsp. stewartii), showing symptoms of yellowish-orange to reddish discolouration and rusty specks on pulps and rags of jackfruit. Twenty-eight pure bacterial strains were collected from four different jackfruit outbreak collection areas in Peninsular Malaysia (Jenderam, Maran, Muadzam Shah and Ipoh). Positive P. stewartii subsp. stewartii verification obtained in the study was based on the phenotypic, hypersensitivity, pathogenicity and molecular tests. Multilocus sequence analysis (MLSA) was performed using four housekeeping genes (gyrB, rpoB, atpD and infB) on all 28 bacterial strains. Single gyrB, rpoB, atpD and infB phylogenetic trees analyses revealed the bootstrap value of 99-100% between our bacterial strains with P. stewartii subsp. stewartii reference strains and P. stewartii subsp. indologenes reference strains. On the other hand, phylogenetic tree of the concatenated sequences of the four housekeeping genes revealed that our 28 bacterial strains were more closely related to P. stewartii subsp. stewartii (99% similarities) compared to its close relative P. stewartii subsp. indologenes, although sequence similarity between these two subspecies were up to 100%. All the strains collected from the four collection areas clustered together, pointing to no variation among the bacterial strains. This study improves our understanding and provided new insight on the genetic diversity of P. stewartii subsp. stewartii associated with jackfruit-bronzing in Malaysia.


Assuntos
Artocarpus/microbiologia , Pantoea/genética , Pantoea/patogenicidade , Doenças das Plantas/microbiologia , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , DNA Intergênico/genética , Genes Bacterianos , Variação Genética , Malásia , Tipagem de Sequências Multilocus , Pantoea/classificação , Filogenia , Virulência/genética
20.
Data Brief ; 30: 105634, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32395592

RESUMO

A Gram-negative bacterium, Pantoea stewartii subspecies stewartii (P. stewartii subsp. stewartii) has been recognized as the causative agent for jackfruit bronzing disease in Malaysia. Here, we report the whole genome sequencing dataset of P. stewartii subsp. stewartii strain SQT1 isolated from local infected jackfruit. The paired-end libraries with an insert size of 350 bp was subjected to the Illumina Hiseq 4000, generating a genome size of 4,783,993 bp with a G+C content of 53.7%. A total protein of 4,671 was identified including virulence factors, resistance factors and secretion systems. Pantoea stewartii subsp. stewartii strain DC283 (NCBI accession no. CP017581.1) was used as a reference genome, where the query hit 72% coverage and average sequencing depth of 68. In total, 28,717 nucleotide polymorphisms, 520 small insertion/deletions and 142 structure variants were identified. The complete genome was deposited at the European Nucleotide Archive under the sample accession number ERP119356 and study accession number PRJEB36196.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...